Разделы сайта

Интерфейс микропроцессоров

Для включения микропроцессора в любую микропроцессорную систему необходимо установить единые принципы и средства его сопряжения с остальными устройствами системы, т.е. унифицированный интерфейс.

Унифицированный интерфейс - совокупность правил, устанавливающих единые принципы взаимодействия устройств микропроцессорной системы. В состав интерфейса входят аппаратурные средства соединения устройств (разъем и связи), номенклатура и характер связей, программные средства, описывающие характер сигналов интерфейса и их временную диаграмму, а также описание электрофизических параметров сигналов.

Рис.4 Схема интерфейсных связей микропроцессора

На рис.4 представлена общая схема взаимодействия микропроцессора МП с устройствами ввода - вывода УВВ и ОЗУ в микропроцессорной системе. Связь МП с УВВ требует пяти групп связи, обеспечиваемых через выводы корпуса. По группе шин 1 передается код выбора (адреса) устройства, по шине 2 - сигнал управления считыванием - записью, по шине 3 - сигнал запроса на прерывания, шины 4 и 5 используются для передачи данных от процессора к УВВ и от УВВ к МП. Связь МП с ОЗУ также содержит пять групп связей, которые необходимо обеспечить через выводы корпуса МП. По группе шин 6 передается адрес в ОЗУ, шина 7 нужна для управления чтением/записью, по сигналам на шине 8 принимаются команды в процессор, а шины 9 и 10 обеспечивают передачу данных из ОЗУ в МП и обратно.

Информационные магистрали

При проектировании БИС и устройств на их основе необходимо принимать во внимание сложность выполнения разветвленных связей между различными узлами (блоками) и устройствами. Поэтому практически реализованы и получили широкое распространение магистральные структуры связей, к которым подключены входы и выходы электронных узлов (блоков). Информационная магистраль (МИ) представляет собой совокупность проводников (шин) или кабелей, физические свойства которых обеспечивают передачу высокочастотных информационных сигналов. Электронные узлы (блоки), подключаемые к информационной магистрали, должны обладать определенными свойствами, иначе возможно образование короткозамкнутых связей и низкоомных нагрузок.

Рис.5 Схема магистральных связей трех регистров данных

Рассмотрим пример передачи данных в системе трех 4-разрядных синхронизируемых регистров с информационными магистральными связями, позволяющий определить общие закономерности построения подобных структур (рис.5).

Входные сигналы записи данных А0-А3 передаются в регистр и вызывают срабатывание триггеров только на переднем фронте сигнала синхронизации при наличии управляющего сигнала “Разрешение записи” РЗn. Если сигнал РЗn=0, то сигналы входных данных не проходят на входы триггеров и поэтому не могут изменить состояние регистра. Входные сопротивления для информационных входов Ai при этом становятся достаточно большими, их параллельное подключение к шинам магистрали данных не ведет к каким-либо проблемам.

Выходные информационные сигналы Q0-Q3 в рассматриваемых схемах формируются с помощью управляемых трехуровневых каскадов, вырабатывающих выходные сигналы логических состояний “0”, “1” и “Выключено”. Управление выходными каскадами триггеров регистра осуществляется сигналом “Разрешение выдачи” РВ. При запрете выдачи выходных состояний (РВ=0) выходные каскады переводятся в режим с высоким выходным сопротивлением. Поэтому параллельное подключение выходных выводов регистров к шинам информационной магистрали также не порождает проблем. Сброс триггеров регистров происходит импульсом синхронизации при подаче сигнала “Разрешение установки 0” (РУ “0”).

В рассматриваемой схеме разрешена только лишь последовательная передача информационных сигналов. Поэтому, несмотря на то, что все входы регистров подключены к шинам магистрали и проходящие по магистрали сигналы поступают на входные каскады всех регистров, запись осуществляется только в один регистр управляющим сигналом РЗn=1 (принципиальных ограничений на одновременную запись одной и той же информации в несколько регистров нет). Однозначность информационных сигналов на магистрали при выдаче информации из регистров обеспечивается подачей только одного управляющего сигнала РВ=1.

Перейти на страницу: 1 2 3 4

Самое читаемое:

Генерирование случайных колебаний LC-автогенератором в жестком режиме возбуждения
автогенератор транзистор колебание Современная наука и техника широко пользуются незатухающими колебаниями. Более того, само развитие радиосвязи, электроакустики, телевидения и многих других отделов новой техники стало возможным только после открытия и изучения систем, могущих генерировать незатухающие колебания за счёт источ ...

www.techstages.ru : Все права защищены! 2019