Разделы сайта

Виды и обозначение диодов

Диоды Шоттки в системных блоках питания. Характеристики, особенности применения и методы проверки

Как показывает текущая статистика отказов современных системных блоков питания, наибольшее количество неисправностей возникает во вторичных цепях источников питания.

Отказы силовых транзисторных ключей (наиболее типовая неисправность блоков питания предыдущих поколений) на сегодняшнее время случаются крайне редко, что является показателем тех успехов, которые были достигнуты за прошедшее пятилетие производителями силовой полупроводниковой электроники.

Одним из самых проблематичных узлов современных блоков питания становятся вторичные выпрямители на диодах Шоттки, что обусловлено большими значениями выходных токов блока питания.

Достоинства диодов Шоттки

В то время как обычные кремниевые диоды имеют прямое падение напряжения около 0.6 - 0.7 В, применение диодов Шоттки позволяет снизить это значение до 0.2 - 0.4 В.

Столь малое прямое падение напряжения присуще только диодам Шоттки с максимальным обратным напряжением порядка десятков вольт.

При больших обратных напряжениях, прямое падение становится сравнимым с аналогичным параметром кремниевых диодов, что ограничивает применение диодов Шоттки низковольтными цепями. Например, для силового диода Шоттки 30Q150 с максимально возможным обратным напряжением (150 В) при прямом токе 15 А падение напряжение нормируется на уровне от 0.75 В (T = 125°C) до 1.07 В (T = -55°C).

Барьер Шоттки также имеет меньшую электрическую ёмкость перехода, что позволяет заметно повысить рабочую частоту диода.

Это свойство используется в интегральных микросхемах, где диодами Шоттки шунтируются переходы транзисторов логических элементов.

В силовой электронике малая ёмкость перехода (то есть короткое время восстановления) позволяет строить выпрямители, работающие на частотах в сотни кГц и выше. Например, диод MBR4015 (15 В, 40 А), оптимизированный под высокочастотное выпрямление, нормирован для работы при dV/dt до 1000 В/мс.Б.

Благодаря лучшим временным характеристикам и малым емкостям перехода, выпрямители на диодах Шоттки отличаются от традиционных диодных выпрямителей пониженным уровнем помех, что делает их наиболее предпочтительными для применения в импульсных блоках питания аналоговой и цифровой аппаратуры.

Недостатки диодов Шоттки

Во-первых, при кратковременном превышении максимального обратного напряжения, диод Шоттки необратимо выходит из строя, в отличие от кремниевых диодов, которые переходят в режим обратного пробоя, и при условии непревышения рассеиваемой на диоде максимальной мощности, после падения напряжения диод полностью восстанавливает свои свойства.

Во-вторых, диоды Шоттки характеризуются повышенными (относительно обычных кремниевых диодов) обратными токами, возрастающими с ростом температуры кристалла. Для вышеупомянутого 30Q150 обратный ток при максимальном обратном напряжении изменяется от 0.12 мА при +25°C до 6.0 мА при +125°C. У низковольтных диодов в корпусах ТО-220 обратный ток может превышать величину в сотни миллиампер (MBR4015 - до 600 мА при +125°C). При неудовлетворительных условиях теплоотвода положительная обратная связь по теплу в диоде Шоттки приводит к его катастрофическому перегреву.

Вольтамперная характеристика барьера Шоттки имеет ярко выраженный несимметричный вид. В области прямых смещений ток экспоненциально растёт с увеличением приложенного напряжения. В области обратных смещений ток от напряжения не зависит. В обоих случаях, при прямом и обратном смещении, ток в барьере Шоттки обусловлен основными носителями заряда - электронами. По этой причине диоды на основе барьера Шоттки являются быстродействующими приборами, поскольку в них отсутствуют рекомбинационные и диффузионные процессы. Несимметричность вольт-амперной характеристики барьера Шоттки является типичной для барьерных структур. Зависимость тока от напряжения в таких структурах обусловлена изменением числа носителей, принимающих участие в процессах зарядопереноса. Роль внешнего напряжения заключается в изменении числа электронов, переходящих из одной части барьерной структуры в другую.

Перейти на страницу: 1 2 

Самое читаемое:

Анализ и синтез автоматической системы регулирования электропривода углового перемещения
Современная теория автоматического регулирования является основной частью теории управления. Система автоматического регулирования состоит из регулируемого объекта и элементов управления, которые воздействуют на объект при изменении одной или нескольких регулируемых переменных. Под влиянием входных сигналов (управления или возмущени ...

www.techstages.ru : Все права защищены! 2024