Влияние окружающей среды неизбежно вносит неопределенность в рабочие параметры системы. Для учета этих факторов необходимо скомпенсировать взаимное влияние температуры и влажности.
Датчики влагосодержания можно классифицировать по принципу действия на следующие типы:
- емкостные датчики, в которых при изменении влажности изменяется электрическая емкость конденсатора с гигроскопичным диэлектриком;
- резистивные датчики, в которых изменяется сопротивление проводника, на поверхность которого нанесен гигроскопический слой;
- пьезосорбционные датчики, в которых влага, поглощенная гигроскопическим покрытием, изменяет собственную частоту колебаний пьезокристалла, на поверхность которого нанесен гигроскопичный слой;
- датчик температуры точки росы, в котором фиксируется температура, соответствующая переходу зеркального отражения металлической поверхностью в диффузное;
- оптический абсорбционный датчик, в котором регистрируется доля поглощенной энергии света в полосах поглощения парами воды электромагнитного излучения.
Каждой из используемых технологий свойственны определенные достоинства и недостатки (точность, долговременная стабильность, время преобразования и т.д.). Из вышеописанных ИП, технологически подходят датчики двух типов: емкостные и резистивные.
Наиболее важные технические параметры, которые необходимо просмотреть при выборе датчика влажности для газоанализатора, это:
- стойкость к загрязнению;
- точность;
- линейность;
- время отклика;
- габариты и стоимость;
- питание.
Дополнительными фактора для рассмотрения могут стать стоимость замены, калибровка, сложность конструкции, надежность усилителя сигнала, схемы обработки данных, тип выхода - емкостный, по напряжению или цифровой.
По всем критериям, в том числе и по распространенности, лидирует емкостный тип датчиков, уступая по стоимости резистивным. Выходной сигнал любого (емкостного или резистивного) абсорбционного датчика влажности представляет собой функцию от температуры и влажности, поэтому для получения высокой точности измерения в широком диапазоне рабочих температур, требуется температурная компенсация характеристики преобразования. Некоторые модели имеют встроенный терморезистор или термистор.
Рассмотрим предъявляемые требования к датчикам температуры для нашей системы:
- устойчивость к химическим воздействиям;
- линейность выходных характеристик;
- малое время отклика;
- низкий дрейф;
- диапазон измеряемых температур;
- высокая точность.
Также существующие виды: термопары, термисторы, терморезистивные и полупроводниковые датчики. Каждый из них предназначен для решения специфических задач, и выбирается из соответствующих условий.
В целях уменьшения стоимостно-габаритых характеристик и сложности подключения, были выбраны комбинированные цифровые датчики влажности-температуры в одном корпусе: SHT11, SHT15.
Точность последнего датчика выше, чем предыдущего 1% и 0.1 оС, а стоимость больше на 30 %. Для калибровки ПП газов, эта точность не столь важна, поскольку у газовых сенсоров незначительный разброс в температуре и влажности не регистрируются.- имеет цифровой интерфейс I2C. CMOS датчики имеют низкое рабочее напряжение 5 В и выпускаются в SMD корпусах. Точность измерения температуры не превышает 0.3оС, а влажности - 2%.
Самое читаемое:
Исследование наноструктурированной поверхности на АСМ Solver HV
Целью
курсовой работы является изучение принципов сканирующей зондовой микроскопии,
получение навыков работы на АСМ SOLVERHV.
Преимущество
АСМ SOLVER HV состоит в том, что система позволяет проводить параллельно с
изучением топографии поверхности исследуемого образца физические, магнитные,
электрические и электростатические хара ...